3.3.14 \(\int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx\) [214]

Optimal. Leaf size=85 \[ \frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}} \]

[Out]

(1/2-1/2*I)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d/a^(1/2)+tan(d*x+c)^(1/2)/d/(a+I
*a*tan(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 85, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {3629, 3627, 3625, 211} \begin {gather*} \frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((1/2 - I/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/(Sqrt[a]*d) + Sqrt[Tan[
c + d*x]]/(d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3627

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*b*f*m)), x] - Dist[(a*c - b*d)/(2*b^2), Int[(a + b*Tan[e
 + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]

Rule 3629

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Dist[a/(a*c - b*d), Int[(
a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {\tan (c+d x)} \sqrt {a+i a \tan (c+d x)}} \, dx &=\frac {2 \sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+i \int \frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}} \, dx\\ &=\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}+\frac {\int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx}{2 a}\\ &=\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}-\frac {(i a) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {\left (\frac {1}{2}-\frac {i}{2}\right ) \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{\sqrt {a} d}+\frac {\sqrt {\tan (c+d x)}}{d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 1.64, size = 140, normalized size = 1.65 \begin {gather*} -\frac {i e^{-2 i (c+d x)} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (-1+e^{2 i (c+d x)}+e^{i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )\right )}{\sqrt {2} a d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[Tan[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]]),x]

[Out]

((-I)*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*(-1 + E^((2*I)*(c + d*x)) + E^(I*(c + d*x))*Sqrt
[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]]))/(Sqrt[2]*a*d*E^((2*I)*(c
+ d*x))*Sqrt[Tan[c + d*x]])

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 351 vs. \(2 (67 ) = 134\).
time = 0.19, size = 352, normalized size = 4.14

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +4 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(352\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, \left (\sqrt {\tan }\left (d x +c \right )\right ) \left (i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{2}\left (d x +c \right )\right )-i \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a +4 i \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \tan \left (d x +c \right )+2 \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \tan \left (d x +c \right )+4 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\right )}{4 d a \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {-i a}\, \left (-\tan \left (d x +c \right )+i\right )^{2}}\) \(352\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/d*(a*(1+I*tan(d*x+c)))^(1/2)*tan(d*x+c)^(1/2)*(I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*
tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^2-I*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(
a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a+4*I*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I
*tan(d*x+c)))^(1/2)*tan(d*x+c)+2*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*
a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)+4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(-I*a)^(1/2))/a/(a*tan(
d*x+c)*(1+I*tan(d*x+c)))^(1/2)/(-I*a)^(1/2)/(-tan(d*x+c)+I)^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(I*a*tan(d*x + c) + a)*sqrt(tan(d*x + c))), x)

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 299 vs. \(2 (61) = 122\).
time = 0.39, size = 299, normalized size = 3.52 \begin {gather*} \frac {{\left (a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) - a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} \log \left (-\frac {1}{4} \, a d \sqrt {-\frac {2 i}{a d^{2}}} e^{\left (i \, d x + i \, c\right )} + \frac {1}{4} \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right ) + 2 \, \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (e^{\left (2 i \, d x + 2 i \, c\right )} + 1\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

1/4*(a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c)*log(1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*sqrt(
a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2*I*c)
 + 1)) - a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c)*log(-1/4*a*d*sqrt(-2*I/(a*d^2))*e^(I*d*x + I*c) + 1/4*sqrt(2)*
sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1))*(e^(2*I*d*x + 2
*I*c) + 1)) + 2*sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*
c) + 1))*(e^(2*I*d*x + 2*I*c) + 1))*e^(-I*d*x - I*c)/(a*d)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )} \sqrt {\tan {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))**(1/2)/tan(d*x+c)**(1/2),x)

[Out]

Integral(1/(sqrt(I*a*(tan(c + d*x) - I))*sqrt(tan(c + d*x))), x)

________________________________________________________________________________________

Giac [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 407 vs. \(2 (61) = 122\).
time = 0.78, size = 407, normalized size = 4.79 \begin {gather*} -\frac {{\left (i \, a \sqrt {{\left | a \right |}} - {\left | a \right |}^{\frac {3}{2}}\right )} \log \left (-\frac {-i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} + 8 \, \sqrt {2} + 12}{2 \, {\left (\frac {1}{2} i \, {\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} + 4 \, \sqrt {2} - 6\right )}}\right )}{4 \, a^{2} d} - \frac {4 \, \sqrt {2} {\left (a \sqrt {{\left | a \right |}} + i \, {\left | a \right |}^{\frac {3}{2}}\right )}}{{\left ({\left (\frac {\sqrt {2} \sqrt {i \, a \tan \left (d x + c\right ) + a} {\left (-\frac {i \, {\left | a \right |}}{a} + 1\right )} {\left | a \right |}^{\frac {3}{2}}}{a^{2}} - \frac {\sqrt {-2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + 2 \, a^{2}} {\left (\frac {\tan \left (d x + c\right )}{\sqrt {\frac {{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a + a^{2}}{a^{2}}}} + 1\right )} {\left | a \right |}}{a^{2}}\right )}^{2} - 4 i\right )} a^{2} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+I*a*tan(d*x+c))^(1/2)/tan(d*x+c)^(1/2),x, algorithm="giac")

[Out]

-1/4*(I*a*sqrt(abs(a)) - abs(a)^(3/2))*log(-1/2*(-I*(sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(
a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a
*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 + 8*sqrt(2) + 12)/(1/2*I*(sqrt(2)*sqrt(I*a*tan(d*x + c) +
a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan
(d*x + c) + a)^2 - 2*(I*a*tan(d*x + c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 + 4*sqrt(2) - 6))/(a^2*d) - 4*sqr
t(2)*(a*sqrt(abs(a)) + I*abs(a)^(3/2))/(((sqrt(2)*sqrt(I*a*tan(d*x + c) + a)*(-I*abs(a)/a + 1)*abs(a)^(3/2)/a^
2 - sqrt(-2*(I*a*tan(d*x + c) + a)*a + 2*a^2)*(tan(d*x + c)/sqrt(((I*a*tan(d*x + c) + a)^2 - 2*(I*a*tan(d*x +
c) + a)*a + a^2)/a^2) + 1)*abs(a)/a^2)^2 - 4*I)*a^2*d)

________________________________________________________________________________________

Mupad [B]
time = 6.09, size = 171, normalized size = 2.01 \begin {gather*} \frac {\sqrt {\mathrm {tan}\left (c+d\,x\right )}\,2{}\mathrm {i}}{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )\,\left (d\,1{}\mathrm {i}-\frac {a\,d\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}\right )}+\frac {2\,\sqrt {\frac {1}{8}{}\mathrm {i}}\,\mathrm {atanh}\left (\frac {32\,\sqrt {\frac {1}{8}{}\mathrm {i}}\,{\left (-a\right )}^{9/2}\,\sqrt {\mathrm {tan}\left (c+d\,x\right )}}{\left (a^4\,4{}\mathrm {i}-\frac {4\,a^5\,\mathrm {tan}\left (c+d\,x\right )}{{\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}^2}\right )\,\left (\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}-\sqrt {a}\right )}\right )}{\sqrt {-a}\,d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(tan(c + d*x)^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2)),x)

[Out]

(tan(c + d*x)^(1/2)*2i)/(((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))*(d*1i - (a*d*tan(c + d*x))/((a + a*tan(c +
d*x)*1i)^(1/2) - a^(1/2))^2)) + (2*(1i/8)^(1/2)*atanh((32*(1i/8)^(1/2)*(-a)^(9/2)*tan(c + d*x)^(1/2))/((a^4*4i
 - (4*a^5*tan(c + d*x))/((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))^2)*((a + a*tan(c + d*x)*1i)^(1/2) - a^(1/2))
)))/((-a)^(1/2)*d)

________________________________________________________________________________________